ROCK MASS CHARACTERISATION OF THE WEAK ZONES
AT THE PERTHUS TUNNEL

B Celada, J M Galera, Geocontrol SA
A Gonzalez, RENFE, Spain & A Rolland, SNCF, France

ABSTRACT

In this paper it is presented the methodology used to characterise the weaker zones of Le Perthus Tunnel. This methodology has two phases. The first one is based on geotechnical classifications and in situ and laboratory tests, while the second one has consisted in the construction of the Le Boulou Experimental Gallery, extensively instrumented, and in the numerical modelling of all the measured data.

1 INTRODUCTION

In the Liaison by a High Speed railway between Barcelona and Montpellier, the cross of the Pyrenees is projected to be done by the “Le Perthus Tunnel”, that with an approximated length of 8200 m, will cross the range situated between Spain and France.

The studies for this tunnel are included in the called binational stretch: “Figueros-Perpignan”, approximately 42 km, and are conducted by the European Group of Economical Interest AEIE/GEIE Sur Europa Mediterráneo/Sud Europe Mediterrané, co-ordinated by technicians of the Spanish and French National Railway Companies RENFE and SNCF, as well as people from the Transportation Ministries of both countries.

2 BACKGROUND

The studies of the Perthus Tunnel have its background, in the jobs successively conducted by SNCF and FGC (Ferrocarril’s de la Generalitat de Catalunya) since 1989.

Several locations and lengths for this tunnel have been considered, but finally the cross of the Pyrenees will be done under the Le Perthus village, between the villages of La Jonquera at Spain and Le Boulou at France. The final location of the tunnel is shown at Figure 1.

As said before several geological and geotechnical studies have been carried out. (SICSOL, 1989, 1994; BURGEAP, 1994 GEOCONTROL, 1989, 1990) but the definitive study was done on 1996 by GEOCONTROL S.A.. This study can be summarised on the following figures:
Detailed geological mapping.
- Geophysical investigation (132 m1 refraction seismic, 3030 m electrical and EM profiles, 3 m electrical sounding, and 6340 m VLF-R survey).
- 7795 m cored boreholes.
- 387 m pressuremeters boreholes.
- 208 ut pressuremeters and dilatometers tests.
- 30 ut hydrofact tests on 3 boreholes.
- 1527 ut laboratory tests.

It can be concluded that the geological model of the tunnel is well known, as it is shown on Figures 2 and 3.

Also the geotechnical model considering the strength and deformability properties of rock mass and water table position and conductivity are known. As an example on the Figure 4 it is shown the data of stretch of the tunnel.

3 GEOLOGICAL SUMMARY OF THE TUNNEL

As it can be seen on Figure 3 the geological profile of Le Perthus Tunnel can be divided as follows:
- 0 to 0+800 m: black slates of Montesquieu Le Boulou Fault.
- 0+800 to 1+830: Les Alberes neises
Figure 2. - Geological map of Le Perthus Tunnel
Figure 3.- Geological profile of Le Perthus Tunnel
- 1+830 to 2+130: Green schists and amphibolic neises. Diorites and marble subordinated.

- 2+130 to 3+290: Diorites and quartz-diorites with quartz and pegmatites dykes.

- 3+290 to 5+630: Green schists, affected by abundant granodiorites bodies. (Sant Marti de la Albera Granitoid). Mylonites.

- 5+630 to 8+200: Le Perthus granodiorite, affected by a late hercynic schistosity Mylonites.

According with this profile the following geotechnical classification of the Tunnel has been established.

- Geotechnical Class II (80 > RMR ≥ 60): 2455 m (29.8 %)

- Geotechnical Class III (60 > RMR ≥ 40): 3910 m (47.7 %)

- Geotechnical Class IV (40 > RMR ≥ 20): 1835 m (22.5 %)

4 WEAKER ZONES OF THE TUNNEL

After all the investigation done it can be concluded that the weaker zones of the future tunnel will be:

- Ampellites. (Black slates of Montesquieu)

- Le Boulou fault.

- Mas Anglade and Sant Climent faults and tectonic zones.

- Fort de Bellegarde fault.

In order to characterise this weak zones, it has been considered the construction of an experimental shaft and gallery at Les Chartreuses de Le Boulou, that will allow to investigate the full scaled behaviour of the ampellites and of the mylonites of Le Boulou Fault, not only consider the mechanical behaviour but also the hydrogeological behaviour as Le Boulou Fault is the source of an important mineral water industry and of a medical thermal baths.

In this paper the methodology for the mechanical characterisation of those weak zones is presented.

5 CHARACTERISATION PROGRAMME

The aim of the characterisation programme that is been carried out is to know the hydromechanical behaviour of the experimental gallery of Le Boulou, based on instrumentation and numerical modelling.

5.1 INSTRUMENTATION PROGRAMME

On the Figure 5 the instrumentation considered is shown. Basically it consists on:
Figure 5.- Instrumentation proposed

- Two boreholes drilled from surface, for deformability measures using an EXTENSOFOR incremental extensometer.
- On borehole drilled from the face of the gallery equipped with the same extensometer.
- Convergence stations for measuring the gallery clousure.

5.2 BLIND PREDICTION

In order to define the range and kind of the instrumentation, a blind prediction has been conducted.

This blind prediction has been done using a 3D-numerical model solved by the FLAC3D v. 2.0 code.

On the Figure 6 the 3D model is shown, considering eight rock mass classes: neis, black slates, fractured neis and slates, fault, weathered neis and slates. The mechanical properties of these terrains are included on Table I. The model has been solved using K_o (horizontal stresses/vertical stresses) equal to 0.7, 1 and 2.
The following results have been obtained:

- **Subsidence**: the highest subsidence, 0.5 mm, is obtained for $K_n = 0.7$, while for $K_n = 4$ the expected subsidence is only 0.3 mm. In any case this is not consider that can be measured properly.

- **Convergence**: on the Figure 7 it is shown the convergence for $K_n = 1$, and on the Table II the maximum expected convergences are shown. Considering that the real measured converge can be approximately 60% of the one calculated, it can be concluded that in the black slates and fault, these measurement will proportionate a big amount of information about the mechanical behaviour and the natural stress field.
Figure 7.- Convergence profile for $K_o = 1$

<table>
<thead>
<tr>
<th>GALLERY ZONE</th>
<th>MEASURE'S DIRECTION</th>
<th>VALUES OF CONVERGENCE (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$K_o=0.7$</td>
<td>$K_o=1$</td>
</tr>
<tr>
<td>GNEISS</td>
<td>HORIZONTAL</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>VERTICAL</td>
<td>0.9</td>
</tr>
<tr>
<td>FAULT</td>
<td>HORIZONTAL</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td>VERTICAL</td>
<td>12.5</td>
</tr>
<tr>
<td>BLACK SLATES</td>
<td>HORIZONTAL</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>VERTICAL</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table II

- Vertical extensometer: with the data of the 3D model, the Table III shows the strains in the vertical extensometer EV-1, while in the Figure 8, the profile in case of $K_o = 0.7$ is shown.
Figure 8. Profile of strain for the vertical extensometer for $K_o = 0.7$

<table>
<thead>
<tr>
<th>DISTANCE TO SHAFT (m)</th>
<th>MEASURE LENGTH (m)</th>
<th>STRAIN (μE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$K_o=0.7$</td>
</tr>
<tr>
<td>INITIAL</td>
<td>FINAL</td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>2.80</td>
<td>0.50</td>
</tr>
<tr>
<td>2.80</td>
<td>3.41</td>
<td>0.60</td>
</tr>
<tr>
<td>3.41</td>
<td>4.13</td>
<td>0.72</td>
</tr>
<tr>
<td>4.13</td>
<td>5.00</td>
<td>0.87</td>
</tr>
<tr>
<td>5.00</td>
<td>5.91</td>
<td>0.91</td>
</tr>
<tr>
<td>5.91</td>
<td>6.91</td>
<td>1.00</td>
</tr>
<tr>
<td>6.91</td>
<td>8.01</td>
<td>1.20</td>
</tr>
<tr>
<td>8.01</td>
<td>9.21</td>
<td>1.21</td>
</tr>
<tr>
<td>9.21</td>
<td>10.54</td>
<td>1.33</td>
</tr>
<tr>
<td>10.54</td>
<td>12.01</td>
<td>1.46</td>
</tr>
<tr>
<td>12.01</td>
<td>13.62</td>
<td>1.61</td>
</tr>
<tr>
<td>13.62</td>
<td>15.38</td>
<td>1.77</td>
</tr>
<tr>
<td>15.38</td>
<td>17.33</td>
<td>1.95</td>
</tr>
<tr>
<td>17.33</td>
<td>19.47</td>
<td>2.14</td>
</tr>
</tbody>
</table>

Table III

The same prediction has been carried out for the extensometer EV-2.
Horizontal extensometer: on the Table IV it is shown the strains for the horizontal extensometer while on Figure 9 it can be observe the strain versus distance to the shaft in the case of $K_o = 1$.

![Graph showing strain vs distance for horizontal extensometers](image)

Figure 9. Strain vs distance for the horizontal extensometers

<table>
<thead>
<tr>
<th>DISTANCE TO SHAFT (m)</th>
<th>MEASURE LENGTH (m)</th>
<th>STRAIN (µµ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL</td>
<td>FINAL</td>
<td></td>
</tr>
<tr>
<td>58.00</td>
<td>60.55</td>
<td>2.55</td>
</tr>
<tr>
<td>60.55</td>
<td>63.60</td>
<td>3.05</td>
</tr>
<tr>
<td>63.60</td>
<td>67.27</td>
<td>3.67</td>
</tr>
<tr>
<td>67.27</td>
<td>71.67</td>
<td>4.40</td>
</tr>
<tr>
<td>71.67</td>
<td>76.94</td>
<td>5.28</td>
</tr>
</tbody>
</table>

Table IV

5.3 MAIN PREDICTIONS

- Subsidence is not a critical parameter to be measured.
- Convergence will be significative in the black slates and specially in the Le Boulou Fault.
- The elastic-plastic transition takes place 5.6 m in front of the gallery face.
- The range of predicted strains for the vertical and horizontal extensometers can be accurately measured.
- The strains are very sensible to the K_o value.

5.4 NUMERICAL MODELLING

After the gallery is built up and all the instrumentation programme finished, the numerical presented model will be updated in order to feed back all the calculations already done.

This will allow to know more about the strength and deformability behaviour of the rock-mass and about the values of the natural stress field around Le Boulou Shaft and Gallery.

6 CONCLUSIONS

The previous studies carried out at Le Perthus tunnel have allowed to know the critical and weaker zones of it. So the following can be concluded:

- The location of the mechanical weaker zones of the tunnel are known.
- The characterisation based on geotechnical classifications and in situ and laboratory tests, had allow to define a range of mechanical properties of the existing black slates and mylonites.
- A further investigation is being carried out based on the instrumentation programme of the Experimental Shaft and Gallery of Le Boulou, and further numerical modelling.
- A blind prediction has been done to define the parameters and range of the measurements of these instrumentation.
- After these jobs are finished, a precise knowledgment of the stress-strain behaviour and of the natural stress field around the Le Boulou Gallery, is expected.